伪标签驱动的类内域对齐:跨域开放集故障诊断Pseudo-Label-Driven Intra-class Domain Alignment: Cross-Domain Open Set Fault Diagnosis
江德鸿,卢佳慧,李岩
摘要(Abstract):
目前,域适应故障诊断方法具有广泛的应用和发展。这些方法通常假设训练数据与测试数据共享相同的标签集。然而在实际应用中该假设往往不成立,且测试环境中可能会出现未知故障类别。为了解决这一挑战,提出了一种基于伪标签驱动的类内域对齐的跨域开放集故障诊断算法。该算法在域适应过程中利用目标域的伪标签机制,通过构建类内域对齐策略,有效缩小源域与目标域同类样本在特征空间中的分布差异,提升模型对已知类的判别能力,并通过扩展分类器的加权对抗学习来构建未知类的决策边界。为减少伪标签决策错误的影响,该方法通过伪标签的熵重新分配样本权重,从而更加准确地区分未知类与已知类。在三个轴承数据集上的实验结果表明,该方法在已知类类别和未知类类别准确率上均优于主流方法,充分验证了其有效性和先进性。
关键词(KeyWords): 迁移学习;域适应;开放集域适应;故障诊断
基金项目(Foundation): 国家自然科学基金(61673142);; 黑龙江省自然科学基金(LH2022F029,JQ2019F002)~~
作者(Author): 江德鸿,卢佳慧,李岩
参考文献(References):
- [1] ZHU Z Q, LEI Y B, QI G Q, et al. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery[J]. Measurement, 2023, 206:112346.
- [2] FANG X, ZHENG J B, JIANG B. A rolling bearing fault diagnosis method based on vibro-acoustic data fusion and fast Fourier transform(FFT)[J/OL].[2024-06-12]. International Journal of Data Science and Analytics. https://doi.org/10.1007/s41060-024-00609-7.
- [3] ZHANG Q, DENG L F. An intelligent fault diagnosis method of rolling bearings based on short-time Fourier transform and convolutional neural network[J]. Journal of Failure Analysis and Prevention, 2023, 23(2):795-811.
- [4] CHEN X H, YANG R, XUE Y H, et al. Deep transfer learning for bearing fault diagnosis:a systematic review since2016[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:3508221.
- [5] DENG Z W, WANG Z Y, TANG Z H, et al. A deep transfer learning method based on stacked autoencoder for crossdomain fault diagnosis[J]. Applied Mathematics and Computation, 2021, 408:126318.
- [6] HUANG M, YIN J H, YAN S M, et al. A fault diagnosis method of bearings based on deep transfer learning[J]. Simulation Modelling Practice and Theory, 2023, 122:102659.
- [7] HAKIM M, OMRAN A A B, AHMED A N, et al. A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning:taxonomy, overview, application, open challenges, weaknesses and recommendations[J]. Ain Shams Engineering Journal, 2023, 14(4):101945.
- [8]王智超.基于子领域自适应的多源跨域滚动轴承故障诊断方法研究[D].哈尔滨:哈尔滨工业大学, 2022.WANG Z C. Research on multi-source and cross-domain rolling bearing fault diagnosis method based on subdomain adaptation network[D]. Harbin:Harbin Institute of Technology, 2022.
- [9]杨大春,孙宇林,张春萌,等.基于改进残差网络深度子域适应的变工况滚动轴承故障诊断[J].轴承, 2024(8):59-67.YANG D C, SUN Y L, ZHANG C M, et al. Fault diagnosis method for rolling bearings under varying working conditions based on the improved residual network deep subdomain adaptation[J]. Bearing, 2024(8):59-67.
- [10] LI X, JIA X D, ZHANG W, et al. Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation[J]. Neurocomputing, 2020, 383:235-247.
- [11] FANG Z, LU J, LIU F, et al. Open set domain adaptation:theoretical bound and algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10):4309-4322.
- [12] SAITO K, YAMAMOTO S, USHIKU Y, et al. Open set domain adaptation by backpropagation[C]//Proceedings of the15th European Conference on Computer Vision. Cham:Springer, 2018:156-171.
- [13]蔡能.基于开放集深度迁移学习的滚动轴承故障诊断方法研究[D].太原:太原理工大学, 2023.CAI N. Research on fault diagnosis method of rolling bearing based on open set deep transfer learning[D]. Taiyuan:Taiyuan University of Technology, 2023.
- [14] LUNDGREN A, JUNG D. Data-driven fault diagnosis analysis and open-set classification of time-series data[J]. Control Engineering Practice, 2022, 121:105006.
- [15] YU X L, ZHAO Z B, ZHANG X W, et al. Deep-learning-based open set fault diagnosis by extreme value theory[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1):185-196.
- [16] CHEN Y, TAO L F, LIU X, et al. Open-set fault recognition and inference for rolling bearing based on open fault semantic subspace[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73:3502611.
- [17] ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems,2021, 32(4):1713-1722.
- [18] LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on Machine Learning,2015:97-105.
- [19] FARAHANI A, VOGHOEI S, RASHEED K, et al. A brief review of domain adaptation[C]//Advances in Data Science and Information Engineering. Cham:Springer, 2021:877-894.
- [20] MORERIO P, VOLPI R, RAGONESI R, et al. Generative pseudo-label refinement for unsupervised domain adaptation[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2020:3119-3128.
- [21] WANG H J, YANG M, LIU J L, et al. Pseudo-label noise prevention, suppression and softening for unsupervised person re-identification[J]. IEEE Transactions on Information Forensics and Security, 2023, 18:3222-3237.
- [22] ZHAO C, SHEN W M. Dual adversarial network for crossdomain open set fault diagnosis[J]. Reliability Engineering&System Safety, 2022, 221:108358.
- [23] ZHU J, HUANG C G, SHEN C Q, et al. Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11):8077-8086.
- [24] ZHANG W, LI X, MA H, et al. Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12):7957-7967.
- [25] SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data:a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64:100-131.
- [26] LI K, PING X L, WANG H Q, et al. Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis[J]. Sensors, 2013, 13(6):8013-8041.
- [27] SHAO S Y, MCALEER S, YAN R Q, et al. Highly accurate machine fault diagnosis using deep transfer learning[J].IEEE Transactions on Industrial Informatics, 2019, 15(4):2446-2455.
- [28] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015:1180-1189.
- [29] SUN B C, SAENKO K. Deep CORAL:correlation alignment for deep domain adaptation[C]//Proceedings of the 14th European Conference on Computer Vision. Cham:Springer,2016:443-450.
- [30] LIU H, CAO Z J, LONG M S, et al. Separate to adapt:open set domain adaptation via progressive separation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:2922-2931.